Metamath Proof Explorer


Theorem ldualgrp

Description: The dual of a vector space is a group. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses ldualgrp.d D = LDual W
ldualgrp.w φ W LMod
Assertion ldualgrp φ D Grp

Proof

Step Hyp Ref Expression
1 ldualgrp.d D = LDual W
2 ldualgrp.w φ W LMod
3 eqid Base W = Base W
4 eqid f + W = f + W
5 eqid LFnl W = LFnl W
6 eqid Scalar W = Scalar W
7 eqid Base Scalar W = Base Scalar W
8 eqid Scalar W = Scalar W
9 eqid opp r Scalar W = opp r Scalar W
10 eqid D = D
11 1 2 3 4 5 6 7 8 9 10 ldualgrplem φ D Grp