Metamath Proof Explorer


Theorem leceifl

Description: Theorem to move the floor function across a non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017)

Ref Expression
Assertion leceifl ABABAB

Proof

Step Hyp Ref Expression
1 ltflcei BAB<AB<A
2 1 ancoms ABB<AB<A
3 2 notbid AB¬B<A¬B<A
4 reflcl BB
5 lenlt ABAB¬B<A
6 4 5 sylan2 ABAB¬B<A
7 ceicl AA
8 7 zred AA
9 lenlt ABAB¬B<A
10 8 9 sylan ABAB¬B<A
11 3 6 10 3bitr4rd ABABAB