Metamath Proof Explorer


Theorem lediv2a

Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007)

Ref Expression
Assertion lediv2a A0<AB0<BC0CABCBCA

Proof

Step Hyp Ref Expression
1 pm3.2 CCCC
2 1 pm2.43i CCC
3 2 adantr C0CCC
4 leid CCC
5 4 anim1ci C0C0CCC
6 3 5 jca C0CCC0CCC
7 6 ad2antlr A0<AC0CABCC0CCC
8 7 3adantl2 A0<AB0<BC0CABCC0CCC
9 id ABAB
10 9 ad2ant2r A0<AB0<BAB
11 10 adantr A0<AB0<BABAB
12 simplr A0<AB0<B0<A
13 12 anim1i A0<AB0<BAB0<AAB
14 11 13 jca A0<AB0<BABAB0<AAB
15 14 3adantl3 A0<AB0<BC0CABAB0<AAB
16 lediv12a CC0CCCAB0<AABCBCA
17 8 15 16 syl2anc A0<AB0<BC0CABCBCA