Metamath Proof Explorer


Theorem leexp1ad

Description: Weak base ordering relationship for exponentiation, a deduction version. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses leexp1ad.1 φA
leexp1ad.2 φB
leexp1ad.3 φN0
leexp1ad.4 φ0A
leexp1ad.5 φAB
Assertion leexp1ad φANBN

Proof

Step Hyp Ref Expression
1 leexp1ad.1 φA
2 leexp1ad.2 φB
3 leexp1ad.3 φN0
4 leexp1ad.4 φ0A
5 leexp1ad.5 φAB
6 1 2 3 3jca φABN0
7 6 4 5 jca32 φABN00AAB
8 leexp1a ABN00AABANBN
9 7 8 syl φANBN