Metamath Proof Explorer


Theorem leibpisum

Description: The Leibniz formula for _pi . This version of leibpi looks nicer but does not assert that the series is convergent so is not as practically useful. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Assertion leibpisum n 0 1 n 2 n + 1 = π 4

Proof

Step Hyp Ref Expression
1 nn0uz 0 = 0
2 0zd 0
3 oveq2 k = n 1 k = 1 n
4 oveq2 k = n 2 k = 2 n
5 4 oveq1d k = n 2 k + 1 = 2 n + 1
6 3 5 oveq12d k = n 1 k 2 k + 1 = 1 n 2 n + 1
7 eqid k 0 1 k 2 k + 1 = k 0 1 k 2 k + 1
8 ovex 1 n 2 n + 1 V
9 6 7 8 fvmpt n 0 k 0 1 k 2 k + 1 n = 1 n 2 n + 1
10 9 adantl n 0 k 0 1 k 2 k + 1 n = 1 n 2 n + 1
11 neg1rr 1
12 reexpcl 1 n 0 1 n
13 11 12 mpan n 0 1 n
14 2nn0 2 0
15 nn0mulcl 2 0 n 0 2 n 0
16 14 15 mpan n 0 2 n 0
17 nn0p1nn 2 n 0 2 n + 1
18 16 17 syl n 0 2 n + 1
19 13 18 nndivred n 0 1 n 2 n + 1
20 19 recnd n 0 1 n 2 n + 1
21 20 adantl n 0 1 n 2 n + 1
22 7 leibpi seq 0 + k 0 1 k 2 k + 1 π 4
23 22 a1i seq 0 + k 0 1 k 2 k + 1 π 4
24 1 2 10 21 23 isumclim n 0 1 n 2 n + 1 = π 4
25 24 mptru n 0 1 n 2 n + 1 = π 4