Metamath Proof Explorer


Theorem lemuldiv3d

Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses lemuldiv3d.1 φ B A C
lemuldiv3d.2 φ 0 < A
lemuldiv3d.3 φ A
lemuldiv3d.4 φ B
lemuldiv3d.5 φ C
Assertion lemuldiv3d φ B C A

Proof

Step Hyp Ref Expression
1 lemuldiv3d.1 φ B A C
2 lemuldiv3d.2 φ 0 < A
3 lemuldiv3d.3 φ A
4 lemuldiv3d.4 φ B
5 lemuldiv3d.5 φ C
6 lemuldiv B C A 0 < A B A C B C A
7 4 5 3 2 6 syl112anc φ B A C B C A
8 1 7 mpbid φ B C A