Metamath Proof Explorer


Theorem lenco

Description: Length of a mapped word is unchanged. (Contributed by Stefan O'Rear, 27-Aug-2015)

Ref Expression
Assertion lenco WWordAF:ABFW=W

Proof

Step Hyp Ref Expression
1 simpr WWordAF:ABF:AB
2 wrdf WWordAW:0..^WA
3 2 adantr WWordAF:ABW:0..^WA
4 fco F:ABW:0..^WAFW:0..^WB
5 1 3 4 syl2anc WWordAF:ABFW:0..^WB
6 ffn FW:0..^WBFWFn0..^W
7 hashfn FWFn0..^WFW=0..^W
8 5 6 7 3syl WWordAF:ABFW=0..^W
9 ffn W:0..^WAWFn0..^W
10 hashfn WFn0..^WW=0..^W
11 3 9 10 3syl WWordAF:ABW=0..^W
12 8 11 eqtr4d WWordAF:ABFW=W