Metamath Proof Explorer


Theorem leneg2d

Description: Negative of one side of 'less than or equal to'. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses leneg2d.1 φA
leneg2d.2 φB
Assertion leneg2d φABBA

Proof

Step Hyp Ref Expression
1 leneg2d.1 φA
2 leneg2d.2 φB
3 2 renegcld φB
4 1 3 lenegd φABBA
5 2 recnd φB
6 5 negnegd φB=B
7 6 breq1d φBABA
8 4 7 bitrd φABBA