Metamath Proof Explorer


Theorem leop

Description: Ordering relation for operators. Definition of positive operator ordering in Kreyszig p. 470. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leop T HrmOp U HrmOp T op U x 0 U - op T x ih x

Proof

Step Hyp Ref Expression
1 leopg T HrmOp U HrmOp T op U U - op T HrmOp x 0 U - op T x ih x
2 hmopd U HrmOp T HrmOp U - op T HrmOp
3 2 ancoms T HrmOp U HrmOp U - op T HrmOp
4 3 biantrurd T HrmOp U HrmOp x 0 U - op T x ih x U - op T HrmOp x 0 U - op T x ih x
5 1 4 bitr4d T HrmOp U HrmOp T op U x 0 U - op T x ih x