Metamath Proof Explorer


Theorem leop

Description: Ordering relation for operators. Definition of positive operator ordering in Kreyszig p. 470. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leop THrmOpUHrmOpTopUx0U-opTxihx

Proof

Step Hyp Ref Expression
1 leopg THrmOpUHrmOpTopUU-opTHrmOpx0U-opTxihx
2 hmopd UHrmOpTHrmOpU-opTHrmOp
3 2 ancoms THrmOpUHrmOpU-opTHrmOp
4 3 biantrurd THrmOpUHrmOpx0U-opTxihxU-opTHrmOpx0U-opTxihx
5 1 4 bitr4d THrmOpUHrmOpTopUx0U-opTxihx