Metamath Proof Explorer


Theorem leopg

Description: Ordering relation for positive operators. Definition of positive operator ordering in Kreyszig p. 470. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leopg T A U B T op U U - op T HrmOp x 0 U - op T x ih x

Proof

Step Hyp Ref Expression
1 oveq2 t = T u - op t = u - op T
2 1 eleq1d t = T u - op t HrmOp u - op T HrmOp
3 1 fveq1d t = T u - op t x = u - op T x
4 3 oveq1d t = T u - op t x ih x = u - op T x ih x
5 4 breq2d t = T 0 u - op t x ih x 0 u - op T x ih x
6 5 ralbidv t = T x 0 u - op t x ih x x 0 u - op T x ih x
7 2 6 anbi12d t = T u - op t HrmOp x 0 u - op t x ih x u - op T HrmOp x 0 u - op T x ih x
8 oveq1 u = U u - op T = U - op T
9 8 eleq1d u = U u - op T HrmOp U - op T HrmOp
10 8 fveq1d u = U u - op T x = U - op T x
11 10 oveq1d u = U u - op T x ih x = U - op T x ih x
12 11 breq2d u = U 0 u - op T x ih x 0 U - op T x ih x
13 12 ralbidv u = U x 0 u - op T x ih x x 0 U - op T x ih x
14 9 13 anbi12d u = U u - op T HrmOp x 0 u - op T x ih x U - op T HrmOp x 0 U - op T x ih x
15 df-leop op = t u | u - op t HrmOp x 0 u - op t x ih x
16 7 14 15 brabg T A U B T op U U - op T HrmOp x 0 U - op T x ih x