Metamath Proof Explorer


Theorem lflset

Description: The set of linear functionals in a left module or left vector space. (Contributed by NM, 15-Apr-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lflset.v V=BaseW
lflset.a +˙=+W
lflset.d D=ScalarW
lflset.s ·˙=W
lflset.k K=BaseD
lflset.p ˙=+D
lflset.t ×˙=D
lflset.f F=LFnlW
Assertion lflset WXF=fKV|rKxVyVfr·˙x+˙y=r×˙fx˙fy

Proof

Step Hyp Ref Expression
1 lflset.v V=BaseW
2 lflset.a +˙=+W
3 lflset.d D=ScalarW
4 lflset.s ·˙=W
5 lflset.k K=BaseD
6 lflset.p ˙=+D
7 lflset.t ×˙=D
8 lflset.f F=LFnlW
9 elex WXWV
10 fveq2 w=WScalarw=ScalarW
11 10 3 eqtr4di w=WScalarw=D
12 11 fveq2d w=WBaseScalarw=BaseD
13 12 5 eqtr4di w=WBaseScalarw=K
14 fveq2 w=WBasew=BaseW
15 14 1 eqtr4di w=WBasew=V
16 13 15 oveq12d w=WBaseScalarwBasew=KV
17 fveq2 w=W+w=+W
18 17 2 eqtr4di w=W+w=+˙
19 fveq2 w=Ww=W
20 19 4 eqtr4di w=Ww=·˙
21 20 oveqd w=Wrwx=r·˙x
22 eqidd w=Wy=y
23 18 21 22 oveq123d w=Wrwx+wy=r·˙x+˙y
24 23 fveq2d w=Wfrwx+wy=fr·˙x+˙y
25 11 fveq2d w=W+Scalarw=+D
26 25 6 eqtr4di w=W+Scalarw=˙
27 11 fveq2d w=WScalarw=D
28 27 7 eqtr4di w=WScalarw=×˙
29 28 oveqd w=WrScalarwfx=r×˙fx
30 eqidd w=Wfy=fy
31 26 29 30 oveq123d w=WrScalarwfx+Scalarwfy=r×˙fx˙fy
32 24 31 eqeq12d w=Wfrwx+wy=rScalarwfx+Scalarwfyfr·˙x+˙y=r×˙fx˙fy
33 15 32 raleqbidv w=WyBasewfrwx+wy=rScalarwfx+ScalarwfyyVfr·˙x+˙y=r×˙fx˙fy
34 15 33 raleqbidv w=WxBasewyBasewfrwx+wy=rScalarwfx+ScalarwfyxVyVfr·˙x+˙y=r×˙fx˙fy
35 13 34 raleqbidv w=WrBaseScalarwxBasewyBasewfrwx+wy=rScalarwfx+ScalarwfyrKxVyVfr·˙x+˙y=r×˙fx˙fy
36 16 35 rabeqbidv w=WfBaseScalarwBasew|rBaseScalarwxBasewyBasewfrwx+wy=rScalarwfx+Scalarwfy=fKV|rKxVyVfr·˙x+˙y=r×˙fx˙fy
37 df-lfl LFnl=wVfBaseScalarwBasew|rBaseScalarwxBasewyBasewfrwx+wy=rScalarwfx+Scalarwfy
38 ovex KVV
39 38 rabex fKV|rKxVyVfr·˙x+˙y=r×˙fx˙fyV
40 36 37 39 fvmpt WVLFnlW=fKV|rKxVyVfr·˙x+˙y=r×˙fx˙fy
41 8 40 eqtrid WVF=fKV|rKxVyVfr·˙x+˙y=r×˙fx˙fy
42 9 41 syl WXF=fKV|rKxVyVfr·˙x+˙y=r×˙fx˙fy