Metamath Proof Explorer


Theorem lflvsdi1

Description: Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014)

Ref Expression
Hypotheses lfldi.v V = Base W
lfldi.r R = Scalar W
lfldi.k K = Base R
lfldi.p + ˙ = + R
lfldi.t · ˙ = R
lfldi.f F = LFnl W
lfldi.w φ W LMod
lfldi.x φ X K
lfldi1.g φ G F
lfldi1.h φ H F
Assertion lflvsdi1 φ G + ˙ f H · ˙ f V × X = G · ˙ f V × X + ˙ f H · ˙ f V × X

Proof

Step Hyp Ref Expression
1 lfldi.v V = Base W
2 lfldi.r R = Scalar W
3 lfldi.k K = Base R
4 lfldi.p + ˙ = + R
5 lfldi.t · ˙ = R
6 lfldi.f F = LFnl W
7 lfldi.w φ W LMod
8 lfldi.x φ X K
9 lfldi1.g φ G F
10 lfldi1.h φ H F
11 1 fvexi V V
12 11 a1i φ V V
13 fconst6g X K V × X : V K
14 8 13 syl φ V × X : V K
15 2 3 1 6 lflf W LMod G F G : V K
16 7 9 15 syl2anc φ G : V K
17 2 3 1 6 lflf W LMod H F H : V K
18 7 10 17 syl2anc φ H : V K
19 2 lmodring W LMod R Ring
20 7 19 syl φ R Ring
21 3 4 5 ringdir R Ring x K y K z K x + ˙ y · ˙ z = x · ˙ z + ˙ y · ˙ z
22 20 21 sylan φ x K y K z K x + ˙ y · ˙ z = x · ˙ z + ˙ y · ˙ z
23 12 14 16 18 22 caofdir φ G + ˙ f H · ˙ f V × X = G · ˙ f V × X + ˙ f H · ˙ f V × X