Metamath Proof Explorer


Theorem lgscl2

Description: The Legendre symbol is an integer with absolute value less than or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgscl2.z Z=x|x1
Assertion lgscl2 ANA/LNZ

Proof

Step Hyp Ref Expression
1 lgscl2.z Z=x|x1
2 eqid nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1=nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1
3 2 1 lgscllem ANA/LNZ