Metamath Proof Explorer


Theorem lgsmodeq

Description: The Legendre (Jacobi) symbol is preserved under reduction mod n when n is odd. Theorem 9.9(c) in ApostolNT p. 188. (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion lgsmodeq ABN¬2NAmodN=BmodNA/LN=B/LN

Proof

Step Hyp Ref Expression
1 3anass AN¬2NAN¬2N
2 1 biimpri AN¬2NAN¬2N
3 2 3adant2 ABN¬2NAN¬2N
4 lgsmod AN¬2NAmodN/LN=A/LN
5 3 4 syl ABN¬2NAmodN/LN=A/LN
6 oveq1 AmodN=BmodNAmodN/LN=BmodN/LN
7 5 6 sylan9req ABN¬2NAmodN=BmodNA/LN=BmodN/LN
8 3anass BN¬2NBN¬2N
9 8 biimpri BN¬2NBN¬2N
10 9 3adant1 ABN¬2NBN¬2N
11 lgsmod BN¬2NBmodN/LN=B/LN
12 10 11 syl ABN¬2NBmodN/LN=B/LN
13 12 adantr ABN¬2NAmodN=BmodNBmodN/LN=B/LN
14 7 13 eqtrd ABN¬2NAmodN=BmodNA/LN=B/LN
15 14 ex ABN¬2NAmodN=BmodNA/LN=B/LN