Metamath Proof Explorer


Theorem lhpmat

Description: An element covered by the lattice unit, when conjoined with an atom not under it, equals the lattice zero. (Contributed by NM, 6-Jun-2012)

Ref Expression
Hypotheses lhpmat.l ˙ = K
lhpmat.m ˙ = meet K
lhpmat.z 0 ˙ = 0. K
lhpmat.a A = Atoms K
lhpmat.h H = LHyp K
Assertion lhpmat K HL W H P A ¬ P ˙ W P ˙ W = 0 ˙

Proof

Step Hyp Ref Expression
1 lhpmat.l ˙ = K
2 lhpmat.m ˙ = meet K
3 lhpmat.z 0 ˙ = 0. K
4 lhpmat.a A = Atoms K
5 lhpmat.h H = LHyp K
6 simprr K HL W H P A ¬ P ˙ W ¬ P ˙ W
7 hlatl K HL K AtLat
8 7 ad2antrr K HL W H P A ¬ P ˙ W K AtLat
9 simprl K HL W H P A ¬ P ˙ W P A
10 eqid Base K = Base K
11 10 5 lhpbase W H W Base K
12 11 ad2antlr K HL W H P A ¬ P ˙ W W Base K
13 10 1 2 3 4 atnle K AtLat P A W Base K ¬ P ˙ W P ˙ W = 0 ˙
14 8 9 12 13 syl3anc K HL W H P A ¬ P ˙ W ¬ P ˙ W P ˙ W = 0 ˙
15 6 14 mpbid K HL W H P A ¬ P ˙ W P ˙ W = 0 ˙