Metamath Proof Explorer


Theorem lhpmcvr2

Description: Alternate way to express that the meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 9-Apr-2013)

Ref Expression
Hypotheses lhpmcvr2.b B=BaseK
lhpmcvr2.l ˙=K
lhpmcvr2.j ˙=joinK
lhpmcvr2.m ˙=meetK
lhpmcvr2.a A=AtomsK
lhpmcvr2.h H=LHypK
Assertion lhpmcvr2 KHLWHXB¬X˙WpA¬p˙Wp˙X˙W=X

Proof

Step Hyp Ref Expression
1 lhpmcvr2.b B=BaseK
2 lhpmcvr2.l ˙=K
3 lhpmcvr2.j ˙=joinK
4 lhpmcvr2.m ˙=meetK
5 lhpmcvr2.a A=AtomsK
6 lhpmcvr2.h H=LHypK
7 eqid K=K
8 1 2 4 7 6 lhpmcvr KHLWHXB¬X˙WX˙WKX
9 simpll KHLWHXB¬X˙WKHL
10 simprl KHLWHXB¬X˙WXB
11 1 6 lhpbase WHWB
12 11 ad2antlr KHLWHXB¬X˙WWB
13 1 2 3 4 7 5 cvrval5 KHLXBWBX˙WKXpA¬p˙Wp˙X˙W=X
14 9 10 12 13 syl3anc KHLWHXB¬X˙WX˙WKXpA¬p˙Wp˙X˙W=X
15 8 14 mpbid KHLWHXB¬X˙WpA¬p˙Wp˙X˙W=X