Metamath Proof Explorer


Theorem lhpn0

Description: A co-atom is nonzero. TODO: is this needed? (Contributed by NM, 26-Apr-2013)

Ref Expression
Hypotheses lhpne0.z 0˙=0.K
lhpne0.h H=LHypK
Assertion lhpn0 KHLWHW0˙

Proof

Step Hyp Ref Expression
1 lhpne0.z 0˙=0.K
2 lhpne0.h H=LHypK
3 eqid <K=<K
4 3 1 2 lhp0lt KHLWH0˙<KW
5 simpl KHLWHKHL
6 hlop KHLKOP
7 eqid BaseK=BaseK
8 7 1 op0cl KOP0˙BaseK
9 6 8 syl KHL0˙BaseK
10 9 adantr KHLWH0˙BaseK
11 simpr KHLWHWH
12 3 pltne KHL0˙BaseKWH0˙<KW0˙W
13 5 10 11 12 syl3anc KHLWH0˙<KW0˙W
14 4 13 mpd KHLWH0˙W
15 14 necomd KHLWHW0˙