Metamath Proof Explorer


Theorem lhp0lt

Description: A co-atom is greater than zero. TODO: is this needed? (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses lhp0lt.s <˙=<K
lhp0lt.z 0˙=0.K
lhp0lt.h H=LHypK
Assertion lhp0lt KHLWH0˙<˙W

Proof

Step Hyp Ref Expression
1 lhp0lt.s <˙=<K
2 lhp0lt.z 0˙=0.K
3 lhp0lt.h H=LHypK
4 eqid AtomsK=AtomsK
5 1 4 3 lhpexlt KHLWHpAtomsKp<˙W
6 simp1l KHLWHpAtomsKp<˙WKHL
7 hlop KHLKOP
8 eqid BaseK=BaseK
9 8 2 op0cl KOP0˙BaseK
10 6 7 9 3syl KHLWHpAtomsKp<˙W0˙BaseK
11 8 4 atbase pAtomsKpBaseK
12 11 3ad2ant2 KHLWHpAtomsKp<˙WpBaseK
13 simp2 KHLWHpAtomsKp<˙WpAtomsK
14 eqid K=K
15 2 14 4 atcvr0 KHLpAtomsK0˙Kp
16 6 13 15 syl2anc KHLWHpAtomsKp<˙W0˙Kp
17 8 1 14 cvrlt KHL0˙BaseKpBaseK0˙Kp0˙<˙p
18 6 10 12 16 17 syl31anc KHLWHpAtomsKp<˙W0˙<˙p
19 simp3 KHLWHpAtomsKp<˙Wp<˙W
20 hlpos KHLKPoset
21 6 20 syl KHLWHpAtomsKp<˙WKPoset
22 simp1r KHLWHpAtomsKp<˙WWH
23 8 3 lhpbase WHWBaseK
24 22 23 syl KHLWHpAtomsKp<˙WWBaseK
25 8 1 plttr KPoset0˙BaseKpBaseKWBaseK0˙<˙pp<˙W0˙<˙W
26 21 10 12 24 25 syl13anc KHLWHpAtomsKp<˙W0˙<˙pp<˙W0˙<˙W
27 18 19 26 mp2and KHLWHpAtomsKp<˙W0˙<˙W
28 27 rexlimdv3a KHLWHpAtomsKp<˙W0˙<˙W
29 5 28 mpd KHLWH0˙<˙W