Metamath Proof Explorer


Theorem lhpoc

Description: The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhpoc.b B=BaseK
lhpoc.o ˙=ocK
lhpoc.a A=AtomsK
lhpoc.h H=LHypK
Assertion lhpoc KHLWBWH˙WA

Proof

Step Hyp Ref Expression
1 lhpoc.b B=BaseK
2 lhpoc.o ˙=ocK
3 lhpoc.a A=AtomsK
4 lhpoc.h H=LHypK
5 eqid 1.K=1.K
6 eqid K=K
7 1 5 6 4 islhp2 KHLWBWHWK1.K
8 1 5 2 6 3 1cvrco KHLWBWK1.K˙WA
9 7 8 bitrd KHLWBWH˙WA