Metamath Proof Explorer


Theorem lhpocat

Description: The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013)

Ref Expression
Hypotheses lhpocat.o ˙=ocK
lhpocat.a A=AtomsK
lhpocat.h H=LHypK
Assertion lhpocat KHLWH˙WA

Proof

Step Hyp Ref Expression
1 lhpocat.o ˙=ocK
2 lhpocat.a A=AtomsK
3 lhpocat.h H=LHypK
4 simpr KHLWHWH
5 eqid BaseK=BaseK
6 5 3 lhpbase WHWBaseK
7 5 1 2 3 lhpoc KHLWBaseKWH˙WA
8 6 7 sylan2 KHLWHWH˙WA
9 4 8 mpbid KHLWH˙WA