Metamath Proof Explorer


Theorem lidl0

Description: Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lidl0.u U=LIdealR
lidl0.z 0˙=0R
Assertion lidl0 RRing0˙U

Proof

Step Hyp Ref Expression
1 lidl0.u U=LIdealR
2 lidl0.z 0˙=0R
3 rlmlmod RRingringLModRLMod
4 rlm0 0R=0ringLModR
5 2 4 eqtri 0˙=0ringLModR
6 eqid LSubSpringLModR=LSubSpringLModR
7 5 6 lsssn0 ringLModRLMod0˙LSubSpringLModR
8 3 7 syl RRing0˙LSubSpringLModR
9 lidlval LIdealR=LSubSpringLModR
10 1 9 eqtri U=LSubSpringLModR
11 8 10 eleqtrrdi RRing0˙U