Metamath Proof Explorer


Theorem lidlnsg

Description: An ideal is a normal subgroup. (Contributed by Thierry Arnoux, 14-Jan-2024)

Ref Expression
Assertion lidlnsg RRingILIdealRINrmSGrpR

Proof

Step Hyp Ref Expression
1 eqid LIdealR=LIdealR
2 1 lidlsubg RRingILIdealRISubGrpR
3 ringabl RRingRAbel
4 3 adantr RRingILIdealRRAbel
5 ablnsg RAbelNrmSGrpR=SubGrpR
6 4 5 syl RRingILIdealRNrmSGrpR=SubGrpR
7 2 6 eleqtrrd RRingILIdealRINrmSGrpR