Description: An ideal is a normal subgroup. (Contributed by Thierry Arnoux, 14-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | lidlnsg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | lidlsubg | |
3 | ringabl | |
|
4 | 3 | adantr | |
5 | ablnsg | |
|
6 | 4 5 | syl | |
7 | 2 6 | eleqtrrd | |