Metamath Proof Explorer


Theorem limcmo

Description: If B is a limit point of the domain of the function F , then there is at most one limit value of F at B . (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limcflf.f φF:A
limcflf.a φA
limcflf.b φBlimPtKA
limcflf.k K=TopOpenfld
Assertion limcmo φ*xxFlimB

Proof

Step Hyp Ref Expression
1 limcflf.f φF:A
2 limcflf.a φA
3 limcflf.b φBlimPtKA
4 limcflf.k K=TopOpenfld
5 4 cnfldhaus KHaus
6 eqid AB=AB
7 eqid neiKB𝑡AB=neiKB𝑡AB
8 1 2 3 4 6 7 limcflflem φneiKB𝑡ABFilAB
9 difss ABA
10 fssres F:AABAFAB:AB
11 1 9 10 sylancl φFAB:AB
12 4 cnfldtopon KTopOn
13 12 toponunii =K
14 13 hausflf KHausneiKB𝑡ABFilABFAB:AB*xxKfLimfneiKB𝑡ABFAB
15 5 8 11 14 mp3an2i φ*xxKfLimfneiKB𝑡ABFAB
16 1 2 3 4 6 7 limcflf φFlimB=KfLimfneiKB𝑡ABFAB
17 16 eleq2d φxFlimBxKfLimfneiKB𝑡ABFAB
18 17 mobidv φ*xxFlimB*xxKfLimfneiKB𝑡ABFAB
19 15 18 mpbird φ*xxFlimB