Metamath Proof Explorer


Theorem limcrcl

Description: Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Assertion limcrcl CFlimBF:domFdomFB

Proof

Step Hyp Ref Expression
1 df-limc lim=f𝑝𝑚,xy|[˙TopOpenfld/j]˙zdomfxifz=xyfzj𝑡domfxCnPjx
2 1 elmpocl CFlimBF𝑝𝑚B
3 cnex V
4 3 3 elpm2 F𝑝𝑚F:domFdomF
5 4 anbi1i F𝑝𝑚BF:domFdomFB
6 df-3an F:domFdomFBF:domFdomFB
7 5 6 bitr4i F𝑝𝑚BF:domFdomFB
8 2 7 sylib CFlimBF:domFdomFB