Metamath Proof Explorer


Theorem limenpsi

Description: A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Hypothesis limenpsi.1 LimA
Assertion limenpsi AVAA

Proof

Step Hyp Ref Expression
1 limenpsi.1 LimA
2 difexg AVAV
3 limsuc LimAxAsucxA
4 1 3 ax-mp xAsucxA
5 4 biimpi xAsucxA
6 nsuceq0 sucx
7 eldifsn sucxAsucxAsucx
8 5 6 7 sylanblrc xAsucxA
9 limord LimAOrdA
10 1 9 ax-mp OrdA
11 ordelon OrdAxAxOn
12 10 11 mpan xAxOn
13 ordelon OrdAyAyOn
14 10 13 mpan yAyOn
15 suc11 xOnyOnsucx=sucyx=y
16 12 14 15 syl2an xAyAsucx=sucyx=y
17 8 16 dom3 AVAVAA
18 2 17 mpdan AVAA
19 difss AA
20 ssdomg AVAAAA
21 19 20 mpi AVAA
22 sbth AAAAAA
23 18 21 22 syl2anc AVAA