Description: A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003) (Revised by Mario Carneiro, 16-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | limenpsi.1 | |
|
Assertion | limenpsi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limenpsi.1 | |
|
2 | difexg | |
|
3 | limsuc | |
|
4 | 1 3 | ax-mp | |
5 | 4 | biimpi | |
6 | nsuceq0 | |
|
7 | eldifsn | |
|
8 | 5 6 7 | sylanblrc | |
9 | limord | |
|
10 | 1 9 | ax-mp | |
11 | ordelon | |
|
12 | 10 11 | mpan | |
13 | ordelon | |
|
14 | 10 13 | mpan | |
15 | suc11 | |
|
16 | 12 14 15 | syl2an | |
17 | 8 16 | dom3 | |
18 | 2 17 | mpdan | |
19 | difss | |
|
20 | ssdomg | |
|
21 | 19 20 | mpi | |
22 | sbth | |
|
23 | 18 21 22 | syl2anc | |