Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Hypothesis | limensuci.1 | |
|
Assertion | limensuci | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limensuci.1 | |
|
2 | 1 | limenpsi | |
3 | 2 | ensymd | |
4 | 0ex | |
|
5 | en2sn | |
|
6 | 4 5 | mpan | |
7 | disjdifr | |
|
8 | limord | |
|
9 | 1 8 | ax-mp | |
10 | ordirr | |
|
11 | 9 10 | ax-mp | |
12 | disjsn | |
|
13 | 11 12 | mpbir | |
14 | unen | |
|
15 | 7 13 14 | mpanr12 | |
16 | 3 6 15 | syl2anc | |
17 | 0ellim | |
|
18 | 1 17 | ax-mp | |
19 | 4 | snss | |
20 | 18 19 | mpbi | |
21 | undif | |
|
22 | 20 21 | mpbi | |
23 | uncom | |
|
24 | 22 23 | eqtr3i | |
25 | df-suc | |
|
26 | 16 24 25 | 3brtr4g | |