Metamath Proof Explorer


Theorem limensuci

Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003)

Ref Expression
Hypothesis limensuci.1 LimA
Assertion limensuci AVAsucA

Proof

Step Hyp Ref Expression
1 limensuci.1 LimA
2 1 limenpsi AVAA
3 2 ensymd AVAA
4 0ex V
5 en2sn VAVA
6 4 5 mpan AVA
7 disjdifr A=
8 limord LimAOrdA
9 1 8 ax-mp OrdA
10 ordirr OrdA¬AA
11 9 10 ax-mp ¬AA
12 disjsn AA=¬AA
13 11 12 mpbir AA=
14 unen AAAA=AA=AAA
15 7 13 14 mpanr12 AAAAAA
16 3 6 15 syl2anc AVAAA
17 0ellim LimAA
18 1 17 ax-mp A
19 4 snss AA
20 18 19 mpbi A
21 undif AA=A
22 20 21 mpbi A=A
23 uncom A=A
24 22 23 eqtr3i A=A
25 df-suc sucA=AA
26 16 24 25 3brtr4g AVAsucA