Metamath Proof Explorer


Theorem liminfltlimsupex

Description: An example where the liminf is strictly smaller than the limsup . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis liminfltlimsupex.1 F = n if 2 n 0 1
Assertion liminfltlimsupex lim inf F < lim sup F

Proof

Step Hyp Ref Expression
1 liminfltlimsupex.1 F = n if 2 n 0 1
2 0lt1 0 < 1
3 1 liminf10ex lim inf F = 0
4 1 limsup10ex lim sup F = 1
5 3 4 breq12i lim inf F < lim sup F 0 < 1
6 2 5 mpbir lim inf F < lim sup F