Metamath Proof Explorer


Theorem liminfresre

Description: The inferior limit of a function only depends on the real part of its domain. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis liminfresre.1 φFV
Assertion liminfresre φlim infF=lim infF

Proof

Step Hyp Ref Expression
1 liminfresre.1 φFV
2 rge0ssre 0+∞
3 2 resabs1i F0+∞=F0+∞
4 3 fveq2i lim infF0+∞=lim infF0+∞
5 4 a1i φlim infF0+∞=lim infF0+∞
6 0red φ0
7 eqid 0+∞=0+∞
8 1 resexd φFV
9 6 7 8 liminfresico φlim infF0+∞=lim infF
10 6 7 1 liminfresico φlim infF0+∞=lim infF
11 5 9 10 3eqtr3d φlim infF=lim infF