Metamath Proof Explorer


Theorem liminfresuz2

Description: If the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfresuz2.1 φM
liminfresuz2.2 Z=M
liminfresuz2.3 φFV
liminfresuz2.4 φdomF
Assertion liminfresuz2 φlim infFZ=lim infF

Proof

Step Hyp Ref Expression
1 liminfresuz2.1 φM
2 liminfresuz2.2 Z=M
3 liminfresuz2.3 φFV
4 liminfresuz2.4 φdomF
5 dmresss domFdomF
6 5 a1i φdomFdomF
7 6 4 sstrd φdomF
8 1 2 3 7 liminfresuz φlim infFZ=lim infF