Metamath Proof Explorer


Theorem limiun

Description: A limit ordinal is the union of its elements, indexed union version. Lemma 2.13 of Schloeder p. 5. See limuni . (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion limiun LimAA=xAx

Proof

Step Hyp Ref Expression
1 limuni LimAA=A
2 uniiun A=xAx
3 1 2 eqtrdi LimAA=xAx