Metamath Proof Explorer


Theorem limsupresicompt

Description: The superior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupresicompt.a φ A V
limsupresicompt.m φ M
limsupresicompt.z Z = M +∞
Assertion limsupresicompt φ lim sup x A B = lim sup x A Z B

Proof

Step Hyp Ref Expression
1 limsupresicompt.a φ A V
2 limsupresicompt.m φ M
3 limsupresicompt.z Z = M +∞
4 1 mptexd φ x A B V
5 2 3 4 limsupresico φ lim sup x A B Z = lim sup x A B
6 resmpt3 x A B Z = x A Z B
7 6 a1i φ x A B Z = x A Z B
8 7 fveq2d φ lim sup x A B Z = lim sup x A Z B
9 5 8 eqtr3d φ lim sup x A B = lim sup x A Z B