Metamath Proof Explorer


Theorem limsupresicompt

Description: The superior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupresicompt.a φAV
limsupresicompt.m φM
limsupresicompt.z Z=M+∞
Assertion limsupresicompt φlim supxAB=lim supxAZB

Proof

Step Hyp Ref Expression
1 limsupresicompt.a φAV
2 limsupresicompt.m φM
3 limsupresicompt.z Z=M+∞
4 1 mptexd φxABV
5 2 3 4 limsupresico φlim supxABZ=lim supxAB
6 resmpt3 xABZ=xAZB
7 6 a1i φxABZ=xAZB
8 7 fveq2d φlim supxABZ=lim supxAZB
9 5 8 eqtr3d φlim supxAB=lim supxAZB