Metamath Proof Explorer


Theorem lindsind2

Description: In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses lindfind2.k K=LSpanW
lindfind2.l L=ScalarW
Assertion lindsind2 WLModLNzRingFLIndSWEF¬EKFE

Proof

Step Hyp Ref Expression
1 lindfind2.k K=LSpanW
2 lindfind2.l L=ScalarW
3 simp1 WLModLNzRingFLIndSWEFWLModLNzRing
4 linds2 FLIndSWIFLIndFW
5 4 3ad2ant2 WLModLNzRingFLIndSWEFIFLIndFW
6 dmresi domIF=F
7 6 eleq2i EdomIFEF
8 7 biimpri EFEdomIF
9 8 3ad2ant3 WLModLNzRingFLIndSWEFEdomIF
10 1 2 lindfind2 WLModLNzRingIFLIndFWEdomIF¬IFEKIFdomIFE
11 3 5 9 10 syl3anc WLModLNzRingFLIndSWEF¬IFEKIFdomIFE
12 fvresi EFIFE=E
13 6 difeq1i domIFE=FE
14 13 imaeq2i IFdomIFE=IFFE
15 difss FEF
16 resiima FEFIFFE=FE
17 15 16 ax-mp IFFE=FE
18 14 17 eqtri IFdomIFE=FE
19 18 fveq2i KIFdomIFE=KFE
20 19 a1i EFKIFdomIFE=KFE
21 12 20 eleq12d EFIFEKIFdomIFEEKFE
22 21 3ad2ant3 WLModLNzRingFLIndSWEFIFEKIFdomIFEEKFE
23 11 22 mtbid WLModLNzRingFLIndSWEF¬EKFE