Metamath Proof Explorer


Theorem lindslinindimp2lem1

Description: Lemma 1 for lindslinindsimp2 . (Contributed by AV, 25-Apr-2019)

Ref Expression
Hypotheses lindslinind.r R = Scalar M
lindslinind.b B = Base R
lindslinind.0 0 ˙ = 0 R
lindslinind.z Z = 0 M
lindslinind.y Y = inv g R f x
lindslinind.g G = f S x
Assertion lindslinindimp2lem1 S V M LMod S Base M x S f B S Y B

Proof

Step Hyp Ref Expression
1 lindslinind.r R = Scalar M
2 lindslinind.b B = Base R
3 lindslinind.0 0 ˙ = 0 R
4 lindslinind.z Z = 0 M
5 lindslinind.y Y = inv g R f x
6 lindslinind.g G = f S x
7 1 lmodfgrp M LMod R Grp
8 7 adantl S V M LMod R Grp
9 elmapi f B S f : S B
10 ffvelrn f : S B x S f x B
11 10 a1d f : S B x S S Base M f x B
12 11 ex f : S B x S S Base M f x B
13 9 12 syl f B S x S S Base M f x B
14 13 com13 S Base M x S f B S f x B
15 14 3imp S Base M x S f B S f x B
16 eqid inv g R = inv g R
17 2 16 grpinvcl R Grp f x B inv g R f x B
18 8 15 17 syl2an S V M LMod S Base M x S f B S inv g R f x B
19 5 18 eqeltrid S V M LMod S Base M x S f B S Y B