Metamath Proof Explorer


Theorem linerflx1

Description: Reflexivity law for line membership. Part of theorem 6.17 of Schwabhauser p. 45. (Contributed by Scott Fenton, 28-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion linerflx1 NP𝔼NQ𝔼NPQPPLineQ

Proof

Step Hyp Ref Expression
1 simpr1 NP𝔼NQ𝔼NPQP𝔼N
2 colineartriv1 NP𝔼NQ𝔼NPColinearPQ
3 2 3adant3r3 NP𝔼NQ𝔼NPQPColinearPQ
4 breq1 x=PxColinearPQPColinearPQ
5 4 elrab Px𝔼N|xColinearPQP𝔼NPColinearPQ
6 1 3 5 sylanbrc NP𝔼NQ𝔼NPQPx𝔼N|xColinearPQ
7 fvline2 NP𝔼NQ𝔼NPQPLineQ=x𝔼N|xColinearPQ
8 6 7 eleqtrrd NP𝔼NQ𝔼NPQPPLineQ