Metamath Proof Explorer


Theorem linerflx1

Description: Reflexivity law for line membership. Part of theorem 6.17 of Schwabhauser p. 45. (Contributed by Scott Fenton, 28-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion linerflx1 N P 𝔼 N Q 𝔼 N P Q P P Line Q

Proof

Step Hyp Ref Expression
1 simpr1 N P 𝔼 N Q 𝔼 N P Q P 𝔼 N
2 colineartriv1 N P 𝔼 N Q 𝔼 N P Colinear P Q
3 2 3adant3r3 N P 𝔼 N Q 𝔼 N P Q P Colinear P Q
4 breq1 x = P x Colinear P Q P Colinear P Q
5 4 elrab P x 𝔼 N | x Colinear P Q P 𝔼 N P Colinear P Q
6 1 3 5 sylanbrc N P 𝔼 N Q 𝔼 N P Q P x 𝔼 N | x Colinear P Q
7 fvline2 N P 𝔼 N Q 𝔼 N P Q P Line Q = x 𝔼 N | x Colinear P Q
8 6 7 eleqtrrd N P 𝔼 N Q 𝔼 N P Q P P Line Q