Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Functionals and kernels of a left vector space (or module)
lkrval2
Next ⟩
ellkr2
Metamath Proof Explorer
Ascii
Unicode
Theorem
lkrval2
Description:
Value of the kernel of a functional.
(Contributed by
NM
, 15-Apr-2014)
Ref
Expression
Hypotheses
lkrfval2.v
⊢
V
=
Base
W
lkrfval2.d
⊢
D
=
Scalar
⁡
W
lkrfval2.o
⊢
0
˙
=
0
D
lkrfval2.f
⊢
F
=
LFnl
⁡
W
lkrfval2.k
⊢
K
=
LKer
⁡
W
Assertion
lkrval2
⊢
W
∈
X
∧
G
∈
F
→
K
⁡
G
=
x
∈
V
|
G
⁡
x
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
lkrfval2.v
⊢
V
=
Base
W
2
lkrfval2.d
⊢
D
=
Scalar
⁡
W
3
lkrfval2.o
⊢
0
˙
=
0
D
4
lkrfval2.f
⊢
F
=
LFnl
⁡
W
5
lkrfval2.k
⊢
K
=
LKer
⁡
W
6
elex
⊢
W
∈
X
→
W
∈
V
7
1
2
3
4
5
ellkr
⊢
W
∈
V
∧
G
∈
F
→
x
∈
K
⁡
G
↔
x
∈
V
∧
G
⁡
x
=
0
˙
8
7
abbi2dv
⊢
W
∈
V
∧
G
∈
F
→
K
⁡
G
=
x
|
x
∈
V
∧
G
⁡
x
=
0
˙
9
df-rab
⊢
x
∈
V
|
G
⁡
x
=
0
˙
=
x
|
x
∈
V
∧
G
⁡
x
=
0
˙
10
8
9
eqtr4di
⊢
W
∈
V
∧
G
∈
F
→
K
⁡
G
=
x
∈
V
|
G
⁡
x
=
0
˙
11
6
10
sylan
⊢
W
∈
X
∧
G
∈
F
→
K
⁡
G
=
x
∈
V
|
G
⁡
x
=
0
˙