Metamath Proof Explorer


Theorem llni2

Description: The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012)

Ref Expression
Hypotheses llni2.j ˙=joinK
llni2.a A=AtomsK
llni2.n N=LLinesK
Assertion llni2 KHLPAQAPQP˙QN

Proof

Step Hyp Ref Expression
1 llni2.j ˙=joinK
2 llni2.a A=AtomsK
3 llni2.n N=LLinesK
4 simpl2 KHLPAQAPQPA
5 simpl3 KHLPAQAPQQA
6 simpr KHLPAQAPQPQ
7 eqidd KHLPAQAPQP˙Q=P˙Q
8 neeq1 r=PrsPs
9 oveq1 r=Pr˙s=P˙s
10 9 eqeq2d r=PP˙Q=r˙sP˙Q=P˙s
11 8 10 anbi12d r=PrsP˙Q=r˙sPsP˙Q=P˙s
12 neeq2 s=QPsPQ
13 oveq2 s=QP˙s=P˙Q
14 13 eqeq2d s=QP˙Q=P˙sP˙Q=P˙Q
15 12 14 anbi12d s=QPsP˙Q=P˙sPQP˙Q=P˙Q
16 11 15 rspc2ev PAQAPQP˙Q=P˙QrAsArsP˙Q=r˙s
17 4 5 6 7 16 syl112anc KHLPAQAPQrAsArsP˙Q=r˙s
18 simpl1 KHLPAQAPQKHL
19 eqid BaseK=BaseK
20 19 1 2 hlatjcl KHLPAQAP˙QBaseK
21 20 adantr KHLPAQAPQP˙QBaseK
22 19 1 2 3 islln3 KHLP˙QBaseKP˙QNrAsArsP˙Q=r˙s
23 18 21 22 syl2anc KHLPAQAPQP˙QNrAsArsP˙Q=r˙s
24 17 23 mpbird KHLPAQAPQP˙QN