Metamath Proof Explorer


Theorem llyss

Description: The "locally" predicate respects inclusion. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion llyss ABLocally A Locally B

Proof

Step Hyp Ref Expression
1 ssel ABj𝑡uAj𝑡uB
2 1 anim2d AByuj𝑡uAyuj𝑡uB
3 2 reximdv ABuj𝒫xyuj𝑡uAuj𝒫xyuj𝑡uB
4 3 ralimdv AByxuj𝒫xyuj𝑡uAyxuj𝒫xyuj𝑡uB
5 4 ralimdv ABxjyxuj𝒫xyuj𝑡uAxjyxuj𝒫xyuj𝑡uB
6 5 anim2d ABjTopxjyxuj𝒫xyuj𝑡uAjTopxjyxuj𝒫xyuj𝑡uB
7 islly jLocally A jTopxjyxuj𝒫xyuj𝑡uA
8 islly jLocally B jTopxjyxuj𝒫xyuj𝑡uB
9 6 7 8 3imtr4g ABjLocally A jLocally B
10 9 ssrdv ABLocally A Locally B