Metamath Proof Explorer


Theorem lmatval

Description: Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020)

Ref Expression
Assertion lmatval MVlitMatM=i1M,j1M0Mi1j1

Proof

Step Hyp Ref Expression
1 elex MVMV
2 fveq2 m=Mm=M
3 2 oveq2d m=M1m=1M
4 fveq1 m=Mm0=M0
5 4 fveq2d m=Mm0=M0
6 5 oveq2d m=M1m0=1M0
7 fveq1 m=Mmi1=Mi1
8 7 fveq1d m=Mmi1j1=Mi1j1
9 3 6 8 mpoeq123dv m=Mi1m,j1m0mi1j1=i1M,j1M0Mi1j1
10 df-lmat litMat=mVi1m,j1m0mi1j1
11 ovex 1MV
12 ovex 1M0V
13 11 12 mpoex i1M,j1M0Mi1j1V
14 9 10 13 fvmpt MVlitMatM=i1M,j1M0Mi1j1
15 1 14 syl MVlitMatM=i1M,j1M0Mi1j1