Metamath Proof Explorer


Theorem lmimco

Description: The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019)

Ref Expression
Assertion lmimco F S LMIso T G R LMIso S F G R LMIso T

Proof

Step Hyp Ref Expression
1 eqid Base S = Base S
2 eqid Base T = Base T
3 1 2 islmim F S LMIso T F S LMHom T F : Base S 1-1 onto Base T
4 eqid Base R = Base R
5 4 1 islmim G R LMIso S G R LMHom S G : Base R 1-1 onto Base S
6 lmhmco F S LMHom T G R LMHom S F G R LMHom T
7 6 ad2ant2r F S LMHom T F : Base S 1-1 onto Base T G R LMHom S G : Base R 1-1 onto Base S F G R LMHom T
8 f1oco F : Base S 1-1 onto Base T G : Base R 1-1 onto Base S F G : Base R 1-1 onto Base T
9 8 ad2ant2l F S LMHom T F : Base S 1-1 onto Base T G R LMHom S G : Base R 1-1 onto Base S F G : Base R 1-1 onto Base T
10 4 2 islmim F G R LMIso T F G R LMHom T F G : Base R 1-1 onto Base T
11 7 9 10 sylanbrc F S LMHom T F : Base S 1-1 onto Base T G R LMHom S G : Base R 1-1 onto Base S F G R LMIso T
12 3 5 11 syl2anb F S LMIso T G R LMIso S F G R LMIso T