Metamath Proof Explorer


Theorem lmod1lem1

Description: Lemma 1 for lmod1 . (Contributed by AV, 28-Apr-2019)

Ref Expression
Hypothesis lmod1.m M = Base ndx I + ndx I I I Scalar ndx R ndx x Base R , y I y
Assertion lmod1lem1 I V R Ring r Base R r M I I

Proof

Step Hyp Ref Expression
1 lmod1.m M = Base ndx I + ndx I I I Scalar ndx R ndx x Base R , y I y
2 fvex Base R V
3 snex I V
4 3 a1i I V R Ring r Base R I V
5 mpoexga Base R V I V x Base R , y I y V
6 2 4 5 sylancr I V R Ring r Base R x Base R , y I y V
7 1 lmodvsca x Base R , y I y V x Base R , y I y = M
8 6 7 syl I V R Ring r Base R x Base R , y I y = M
9 8 eqcomd I V R Ring r Base R M = x Base R , y I y
10 simprr I V R Ring r Base R x = r y = I y = I
11 simp3 I V R Ring r Base R r Base R
12 snidg I V I I
13 12 3ad2ant1 I V R Ring r Base R I I
14 9 10 11 13 13 ovmpod I V R Ring r Base R r M I = I
15 14 13 eqeltrd I V R Ring r Base R r M I I