Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Linear algebra (extension)
Simple left modules and the ` ZZ `-module
lmod1lem1
Next ⟩
lmod1lem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
lmod1lem1
Description:
Lemma 1 for
lmod1
.
(Contributed by
AV
, 28-Apr-2019)
Ref
Expression
Hypothesis
lmod1.m
⊢
M
=
Base
ndx
I
+
ndx
I
I
I
Scalar
⁡
ndx
R
∪
⋅
ndx
x
∈
Base
R
,
y
∈
I
⟼
y
Assertion
lmod1lem1
⊢
I
∈
V
∧
R
∈
Ring
∧
r
∈
Base
R
→
r
⋅
M
I
∈
I
Proof
Step
Hyp
Ref
Expression
1
lmod1.m
⊢
M
=
Base
ndx
I
+
ndx
I
I
I
Scalar
⁡
ndx
R
∪
⋅
ndx
x
∈
Base
R
,
y
∈
I
⟼
y
2
fvex
⊢
Base
R
∈
V
3
snex
⊢
I
∈
V
4
3
a1i
⊢
I
∈
V
∧
R
∈
Ring
∧
r
∈
Base
R
→
I
∈
V
5
mpoexga
⊢
Base
R
∈
V
∧
I
∈
V
→
x
∈
Base
R
,
y
∈
I
⟼
y
∈
V
6
2
4
5
sylancr
⊢
I
∈
V
∧
R
∈
Ring
∧
r
∈
Base
R
→
x
∈
Base
R
,
y
∈
I
⟼
y
∈
V
7
1
lmodvsca
⊢
x
∈
Base
R
,
y
∈
I
⟼
y
∈
V
→
x
∈
Base
R
,
y
∈
I
⟼
y
=
⋅
M
8
6
7
syl
⊢
I
∈
V
∧
R
∈
Ring
∧
r
∈
Base
R
→
x
∈
Base
R
,
y
∈
I
⟼
y
=
⋅
M
9
8
eqcomd
⊢
I
∈
V
∧
R
∈
Ring
∧
r
∈
Base
R
→
⋅
M
=
x
∈
Base
R
,
y
∈
I
⟼
y
10
simprr
⊢
I
∈
V
∧
R
∈
Ring
∧
r
∈
Base
R
∧
x
=
r
∧
y
=
I
→
y
=
I
11
simp3
⊢
I
∈
V
∧
R
∈
Ring
∧
r
∈
Base
R
→
r
∈
Base
R
12
snidg
⊢
I
∈
V
→
I
∈
I
13
12
3ad2ant1
⊢
I
∈
V
∧
R
∈
Ring
∧
r
∈
Base
R
→
I
∈
I
14
9
10
11
13
13
ovmpod
⊢
I
∈
V
∧
R
∈
Ring
∧
r
∈
Base
R
→
r
⋅
M
I
=
I
15
14
13
eqeltrd
⊢
I
∈
V
∧
R
∈
Ring
∧
r
∈
Base
R
→
r
⋅
M
I
∈
I