Metamath Proof Explorer


Theorem lnfncnbd

Description: A linear functional is continuous iff it is bounded. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion lnfncnbd TLinFnTContFnnormfnT

Proof

Step Hyp Ref Expression
1 nmcfnex TLinFnTContFnnormfnT
2 1 ex TLinFnTContFnnormfnT
3 simpr TLinFnnormfnTnormfnT
4 nmbdfnlb TLinFnnormfnTyTynormfnTnormy
5 4 3expa TLinFnnormfnTyTynormfnTnormy
6 5 ralrimiva TLinFnnormfnTyTynormfnTnormy
7 oveq1 x=normfnTxnormy=normfnTnormy
8 7 breq2d x=normfnTTyxnormyTynormfnTnormy
9 8 ralbidv x=normfnTyTyxnormyyTynormfnTnormy
10 9 rspcev normfnTyTynormfnTnormyxyTyxnormy
11 3 6 10 syl2anc TLinFnnormfnTxyTyxnormy
12 11 ex TLinFnnormfnTxyTyxnormy
13 lnfncon TLinFnTContFnxyTyxnormy
14 12 13 sylibrd TLinFnnormfnTTContFn
15 2 14 impbid TLinFnTContFnnormfnT