Metamath Proof Explorer


Theorem lnfncon

Description: A condition equivalent to " T is continuous" when T is linear. Theorem 3.5(iii) of Beran p. 99. (Contributed by NM, 16-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion lnfncon TLinFnTContFnxyTyxnormy

Proof

Step Hyp Ref Expression
1 eleq1 T=ifTLinFnT×0TContFnifTLinFnT×0ContFn
2 fveq1 T=ifTLinFnT×0Ty=ifTLinFnT×0y
3 2 fveq2d T=ifTLinFnT×0Ty=ifTLinFnT×0y
4 3 breq1d T=ifTLinFnT×0TyxnormyifTLinFnT×0yxnormy
5 4 rexralbidv T=ifTLinFnT×0xyTyxnormyxyifTLinFnT×0yxnormy
6 1 5 bibi12d T=ifTLinFnT×0TContFnxyTyxnormyifTLinFnT×0ContFnxyifTLinFnT×0yxnormy
7 0lnfn ×0LinFn
8 7 elimel ifTLinFnT×0LinFn
9 8 lnfnconi ifTLinFnT×0ContFnxyifTLinFnT×0yxnormy
10 6 9 dedth TLinFnTContFnxyTyxnormy