Metamath Proof Explorer


Theorem lo1mul2

Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses o1add2.1 φxABV
o1add2.2 φxACV
lo1add.3 φxAB𝑂1
lo1add.4 φxAC𝑂1
lo1mul.5 φxA0B
Assertion lo1mul2 φxACB𝑂1

Proof

Step Hyp Ref Expression
1 o1add2.1 φxABV
2 o1add2.2 φxACV
3 lo1add.3 φxAB𝑂1
4 lo1add.4 φxAC𝑂1
5 lo1mul.5 φxA0B
6 2 4 lo1mptrcl φxAC
7 6 recnd φxAC
8 1 3 lo1mptrcl φxAB
9 8 recnd φxAB
10 7 9 mulcomd φxACB=BC
11 10 mpteq2dva φxACB=xABC
12 1 2 3 4 5 lo1mul φxABC𝑂1
13 11 12 eqeltrd φxACB𝑂1