Metamath Proof Explorer


Theorem lo1mul

Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses o1add2.1 φxABV
o1add2.2 φxACV
lo1add.3 φxAB𝑂1
lo1add.4 φxAC𝑂1
lo1mul.5 φxA0B
Assertion lo1mul φxABC𝑂1

Proof

Step Hyp Ref Expression
1 o1add2.1 φxABV
2 o1add2.2 φxACV
3 lo1add.3 φxAB𝑂1
4 lo1add.4 φxAC𝑂1
5 lo1mul.5 φxA0B
6 reeanv mncxAcxBmcxAcxCnmcxAcxBmncxAcxCn
7 1 ralrimiva φxABV
8 dmmptg xABVdomxAB=A
9 7 8 syl φdomxAB=A
10 lo1dm xAB𝑂1domxAB
11 3 10 syl φdomxAB
12 9 11 eqsstrrd φA
13 12 adantr φmnA
14 rexanre AcxAcxBmCncxAcxBmcxAcxCn
15 13 14 syl φmncxAcxBmCncxAcxBmcxAcxCn
16 simprl φmnm
17 simprr φmnn
18 0re 0
19 ifcl n0if0nn0
20 17 18 19 sylancl φmnif0nn0
21 16 20 remulcld φmnmif0nn0
22 simplrr φmnxAn
23 max2 0nnif0nn0
24 18 22 23 sylancr φmnxAnif0nn0
25 2 4 lo1mptrcl φxAC
26 25 adantlr φmnxAC
27 22 18 19 sylancl φmnxAif0nn0
28 letr Cnif0nn0Cnnif0nn0Cif0nn0
29 26 22 27 28 syl3anc φmnxACnnif0nn0Cif0nn0
30 24 29 mpan2d φmnxACnCif0nn0
31 1 3 lo1mptrcl φxAB
32 31 adantlr φmnxAB
33 5 adantlr φmnxA0B
34 32 33 jca φmnxAB0B
35 simplrl φmnxAm
36 max1 0n0if0nn0
37 18 22 36 sylancr φmnxA0if0nn0
38 27 37 jca φmnxAif0nn00if0nn0
39 lemul12b B0BmCif0nn00if0nn0BmCif0nn0BCmif0nn0
40 34 35 26 38 39 syl22anc φmnxABmCif0nn0BCmif0nn0
41 30 40 sylan2d φmnxABmCnBCmif0nn0
42 41 imim2d φmnxAcxBmCncxBCmif0nn0
43 42 ralimdva φmnxAcxBmCnxAcxBCmif0nn0
44 breq2 p=mif0nn0BCpBCmif0nn0
45 44 imbi2d p=mif0nn0cxBCpcxBCmif0nn0
46 45 ralbidv p=mif0nn0xAcxBCpxAcxBCmif0nn0
47 46 rspcev mif0nn0xAcxBCmif0nn0pxAcxBCp
48 21 43 47 syl6an φmnxAcxBmCnpxAcxBCp
49 48 reximdv φmncxAcxBmCncpxAcxBCp
50 15 49 sylbird φmncxAcxBmcxAcxCncpxAcxBCp
51 50 rexlimdvva φmncxAcxBmcxAcxCncpxAcxBCp
52 6 51 biimtrrid φmcxAcxBmncxAcxCncpxAcxBCp
53 12 31 ello1mpt φxAB𝑂1cmxAcxBm
54 rexcom cmxAcxBmmcxAcxBm
55 53 54 bitrdi φxAB𝑂1mcxAcxBm
56 12 25 ello1mpt φxAC𝑂1cnxAcxCn
57 rexcom cnxAcxCnncxAcxCn
58 56 57 bitrdi φxAC𝑂1ncxAcxCn
59 55 58 anbi12d φxAB𝑂1xAC𝑂1mcxAcxBmncxAcxCn
60 31 25 remulcld φxABC
61 12 60 ello1mpt φxABC𝑂1cpxAcxBCp
62 52 59 61 3imtr4d φxAB𝑂1xAC𝑂1xABC𝑂1
63 3 4 62 mp2and φxABC𝑂1