Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | o1add2.1 | |
|
o1add2.2 | |
||
lo1add.3 | |
||
lo1add.4 | |
||
lo1mul.5 | |
||
Assertion | lo1mul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o1add2.1 | |
|
2 | o1add2.2 | |
|
3 | lo1add.3 | |
|
4 | lo1add.4 | |
|
5 | lo1mul.5 | |
|
6 | reeanv | |
|
7 | 1 | ralrimiva | |
8 | dmmptg | |
|
9 | 7 8 | syl | |
10 | lo1dm | |
|
11 | 3 10 | syl | |
12 | 9 11 | eqsstrrd | |
13 | 12 | adantr | |
14 | rexanre | |
|
15 | 13 14 | syl | |
16 | simprl | |
|
17 | simprr | |
|
18 | 0re | |
|
19 | ifcl | |
|
20 | 17 18 19 | sylancl | |
21 | 16 20 | remulcld | |
22 | simplrr | |
|
23 | max2 | |
|
24 | 18 22 23 | sylancr | |
25 | 2 4 | lo1mptrcl | |
26 | 25 | adantlr | |
27 | 22 18 19 | sylancl | |
28 | letr | |
|
29 | 26 22 27 28 | syl3anc | |
30 | 24 29 | mpan2d | |
31 | 1 3 | lo1mptrcl | |
32 | 31 | adantlr | |
33 | 5 | adantlr | |
34 | 32 33 | jca | |
35 | simplrl | |
|
36 | max1 | |
|
37 | 18 22 36 | sylancr | |
38 | 27 37 | jca | |
39 | lemul12b | |
|
40 | 34 35 26 38 39 | syl22anc | |
41 | 30 40 | sylan2d | |
42 | 41 | imim2d | |
43 | 42 | ralimdva | |
44 | breq2 | |
|
45 | 44 | imbi2d | |
46 | 45 | ralbidv | |
47 | 46 | rspcev | |
48 | 21 43 47 | syl6an | |
49 | 48 | reximdv | |
50 | 15 49 | sylbird | |
51 | 50 | rexlimdvva | |
52 | 6 51 | biimtrrid | |
53 | 12 31 | ello1mpt | |
54 | rexcom | |
|
55 | 53 54 | bitrdi | |
56 | 12 25 | ello1mpt | |
57 | rexcom | |
|
58 | 56 57 | bitrdi | |
59 | 55 58 | anbi12d | |
60 | 31 25 | remulcld | |
61 | 12 60 | ello1mpt | |
62 | 52 59 61 | 3imtr4d | |
63 | 3 4 62 | mp2and | |