Step |
Hyp |
Ref |
Expression |
1 |
|
o1add2.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
2 |
|
o1add2.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
3 |
|
lo1add.3 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) |
4 |
|
lo1add.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ) |
5 |
|
lo1mul.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
6 |
|
reeanv |
⊢ ( ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ↔ ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) |
7 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
8 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
10 |
|
lo1dm |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
11 |
3 10
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
12 |
9 11
|
eqsstrrd |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝐴 ⊆ ℝ ) |
14 |
|
rexanre |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) ) |
16 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝑚 ∈ ℝ ) |
17 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝑛 ∈ ℝ ) |
18 |
|
0re |
⊢ 0 ∈ ℝ |
19 |
|
ifcl |
⊢ ( ( 𝑛 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ∈ ℝ ) |
20 |
17 18 19
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ∈ ℝ ) |
21 |
16 20
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ∈ ℝ ) |
22 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ∈ ℝ ) |
23 |
|
max2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → 𝑛 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) |
24 |
18 22 23
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) |
25 |
2 4
|
lo1mptrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
26 |
25
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
27 |
22 18 19
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ∈ ℝ ) |
28 |
|
letr |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ∈ ℝ ) → ( ( 𝐶 ≤ 𝑛 ∧ 𝑛 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) → 𝐶 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) |
29 |
26 22 27 28
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐶 ≤ 𝑛 ∧ 𝑛 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) → 𝐶 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) |
30 |
24 29
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 ≤ 𝑛 → 𝐶 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) |
31 |
1 3
|
lo1mptrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
32 |
31
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
33 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
34 |
32 33
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
35 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑚 ∈ ℝ ) |
36 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) |
37 |
18 22 36
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) |
38 |
27 37
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) |
39 |
|
lemul12b |
⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ 𝑚 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) → ( ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) |
40 |
34 35 26 38 39
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) |
41 |
30 40
|
sylan2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) |
42 |
41
|
imim2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) → ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) ) |
43 |
42
|
ralimdva |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) ) |
44 |
|
breq2 |
⊢ ( 𝑝 = ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) → ( ( 𝐵 · 𝐶 ) ≤ 𝑝 ↔ ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) |
45 |
44
|
imbi2d |
⊢ ( 𝑝 = ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) → ( ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ↔ ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) ) |
46 |
45
|
ralbidv |
⊢ ( 𝑝 = ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) ) |
47 |
46
|
rspcev |
⊢ ( ( ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ ( 𝑚 · if ( 0 ≤ 𝑛 , 𝑛 , 0 ) ) ) ) → ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ) |
48 |
21 43 47
|
syl6an |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) → ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ) ) |
49 |
48
|
reximdv |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ 𝐶 ≤ 𝑛 ) ) → ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ) ) |
50 |
15 49
|
sylbird |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) → ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ) ) |
51 |
50
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) → ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ) ) |
52 |
6 51
|
syl5bir |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) → ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ) ) |
53 |
12 31
|
ello1mpt |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
54 |
|
rexcom |
⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) |
55 |
53 54
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
56 |
12 25
|
ello1mpt |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) |
57 |
|
rexcom |
⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ↔ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) |
58 |
56 57
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ↔ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) |
59 |
55 58
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ) ↔ ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐶 ≤ 𝑛 ) ) ) ) |
60 |
31 25
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) |
61 |
12 60
|
ello1mpt |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · 𝐶 ) ) ∈ ≤𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 · 𝐶 ) ≤ 𝑝 ) ) ) |
62 |
52 59 61
|
3imtr4d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · 𝐶 ) ) ∈ ≤𝑂(1) ) ) |
63 |
3 4 62
|
mp2and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · 𝐶 ) ) ∈ ≤𝑂(1) ) |