Metamath Proof Explorer


Theorem logef

Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion logef AranloglogeA=A

Proof

Step Hyp Ref Expression
1 dflog2 log=expranlog-1
2 1 fveq1i logexpranlogA=expranlog-1expranlogA
3 fvres AranlogexpranlogA=eA
4 3 fveq2d AranloglogexpranlogA=logeA
5 eff1o2 expranlog:ranlog1-1 onto0
6 f1ocnvfv1 expranlog:ranlog1-1 onto0Aranlogexpranlog-1expranlogA=A
7 5 6 mpan Aranlogexpranlog-1expranlogA=A
8 2 4 7 3eqtr3a AranloglogeA=A