Metamath Proof Explorer


Theorem logimclad

Description: The imaginary part of the logarithm is in ( -upi (,] pi ) . Alternate form of logimcld . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses logimcld.1 φX
logimcld.2 φX0
Assertion logimclad φlogXππ

Proof

Step Hyp Ref Expression
1 logimcld.1 φX
2 logimcld.2 φX0
3 1 2 logcld φlogX
4 3 imcld φlogX
5 1 2 logimcld φπ<logXlogXπ
6 5 simpld φπ<logX
7 5 simprd φlogXπ
8 pire π
9 8 renegcli π
10 9 rexri π*
11 elioc2 π*πlogXππlogXπ<logXlogXπ
12 10 8 11 mp2an logXππlogXπ<logXlogXπ
13 4 6 7 12 syl3anbrc φlogXππ