Metamath Proof Explorer


Theorem logrn

Description: The range of the natural logarithm function, also the principal domain of the exponential function. This allows to write the longer class expression as simply ran log . (Contributed by Paul Chapman, 21-Apr-2008) (Revised by Mario Carneiro, 13-May-2014)

Ref Expression
Assertion logrn ranlog=-1ππ

Proof

Step Hyp Ref Expression
1 df-log log=exp-1ππ-1
2 1 rneqi ranlog=ranexp-1ππ-1
3 eqid -1ππ=-1ππ
4 3 eff1o exp-1ππ:-1ππ1-1 onto0
5 f1ocnv exp-1ππ:-1ππ1-1 onto0exp-1ππ-1:01-1 onto-1ππ
6 4 5 ax-mp exp-1ππ-1:01-1 onto-1ππ
7 f1ofo exp-1ππ-1:01-1 onto-1ππexp-1ππ-1:0onto-1ππ
8 forn exp-1ππ-1:0onto-1ππranexp-1ππ-1=-1ππ
9 6 7 8 mp2b ranexp-1ππ-1=-1ππ
10 2 9 eqtri ranlog=-1ππ