Metamath Proof Explorer


Theorem lpiss

Description: Principal ideals are a subclass of ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lpival.p P=LPIdealR
lpiss.u U=LIdealR
Assertion lpiss RRingPU

Proof

Step Hyp Ref Expression
1 lpival.p P=LPIdealR
2 lpiss.u U=LIdealR
3 eqid RSpanR=RSpanR
4 eqid BaseR=BaseR
5 1 3 4 islpidl RRingaPgBaseRa=RSpanRg
6 snssi gBaseRgBaseR
7 3 4 2 rspcl RRinggBaseRRSpanRgU
8 6 7 sylan2 RRinggBaseRRSpanRgU
9 eleq1 a=RSpanRgaURSpanRgU
10 8 9 syl5ibrcom RRinggBaseRa=RSpanRgaU
11 10 rexlimdva RRinggBaseRa=RSpanRgaU
12 5 11 sylbid RRingaPaU
13 12 ssrdv RRingPU