Description: Any element greater than 0 and not an atom and not a lattice line majorizes a lattice plane. (Contributed by NM, 28-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lplnle.b | |
|
lplnle.l | |
||
lplnle.z | |
||
lplnle.a | |
||
lplnle.n | |
||
lplnle.p | |
||
Assertion | lplnle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lplnle.b | |
|
2 | lplnle.l | |
|
3 | lplnle.z | |
|
4 | lplnle.a | |
|
5 | lplnle.n | |
|
6 | lplnle.p | |
|
7 | 1 2 3 4 5 | llnle | |
8 | 7 | 3adantr3 | |
9 | simp1ll | |
|
10 | 1 5 | llnbase | |
11 | 10 | 3ad2ant2 | |
12 | simp1lr | |
|
13 | simp3 | |
|
14 | simp2 | |
|
15 | simp1r3 | |
|
16 | nelne2 | |
|
17 | 14 15 16 | syl2anc | |
18 | eqid | |
|
19 | 2 18 | pltval | |
20 | 9 14 12 19 | syl3anc | |
21 | 13 17 20 | mpbir2and | |
22 | eqid | |
|
23 | eqid | |
|
24 | 1 2 18 22 23 4 | hlrelat3 | |
25 | 9 11 12 21 24 | syl31anc | |
26 | simp1ll | |
|
27 | 26 | hllatd | |
28 | simp21 | |
|
29 | 28 10 | syl | |
30 | simp23 | |
|
31 | 1 4 | atbase | |
32 | 30 31 | syl | |
33 | 1 22 | latjcl | |
34 | 27 29 32 33 | syl3anc | |
35 | simp3l | |
|
36 | 1 23 5 6 | lplni | |
37 | 26 34 28 35 36 | syl31anc | |
38 | simp3r | |
|
39 | breq1 | |
|
40 | 39 | rspcev | |
41 | 37 38 40 | syl2anc | |
42 | 41 | 3exp | |
43 | 42 | 3expd | |
44 | 43 | 3imp | |
45 | 44 | rexlimdv | |
46 | 25 45 | mpd | |
47 | 46 | 3exp | |
48 | 47 | rexlimdv | |
49 | 8 48 | mpd | |